\(\int \frac {(b \cos (c+d x))^{5/2} (A+B \cos (c+d x)+C \cos ^2(c+d x))}{\cos ^{\frac {9}{2}}(c+d x)} \, dx\) [311]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 43, antiderivative size = 102 \[ \int \frac {(b \cos (c+d x))^{5/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {b^2 C x \sqrt {b \cos (c+d x)}}{\sqrt {\cos (c+d x)}}+\frac {b^2 B \text {arctanh}(\sin (c+d x)) \sqrt {b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}+\frac {A b^2 \sqrt {b \cos (c+d x)} \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x)} \]

[Out]

A*b^2*sin(d*x+c)*(b*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(3/2)+b^2*C*x*(b*cos(d*x+c))^(1/2)/cos(d*x+c)^(1/2)+b^2*B*a
rctanh(sin(d*x+c))*(b*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 102, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.093, Rules used = {17, 3100, 2814, 3855} \[ \int \frac {(b \cos (c+d x))^{5/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {A b^2 \sin (c+d x) \sqrt {b \cos (c+d x)}}{d \cos ^{\frac {3}{2}}(c+d x)}+\frac {b^2 B \text {arctanh}(\sin (c+d x)) \sqrt {b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}+\frac {b^2 C x \sqrt {b \cos (c+d x)}}{\sqrt {\cos (c+d x)}} \]

[In]

Int[((b*Cos[c + d*x])^(5/2)*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/Cos[c + d*x]^(9/2),x]

[Out]

(b^2*C*x*Sqrt[b*Cos[c + d*x]])/Sqrt[Cos[c + d*x]] + (b^2*B*ArcTanh[Sin[c + d*x]]*Sqrt[b*Cos[c + d*x]])/(d*Sqrt
[Cos[c + d*x]]) + (A*b^2*Sqrt[b*Cos[c + d*x]]*Sin[c + d*x])/(d*Cos[c + d*x]^(3/2))

Rule 17

Int[(u_.)*((a_.)*(v_))^(m_)*((b_.)*(v_))^(n_), x_Symbol] :> Dist[a^(m + 1/2)*b^(n - 1/2)*(Sqrt[b*v]/Sqrt[a*v])
, Int[u*v^(m + n), x], x] /; FreeQ[{a, b, m}, x] &&  !IntegerQ[m] && IGtQ[n + 1/2, 0] && IntegerQ[m + n]

Rule 2814

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[b*(x/d)
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 3100

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m
+ 1)*(a^2 - b^2))), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B +
a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b,
e, f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\left (b^2 \sqrt {b \cos (c+d x)}\right ) \int \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x) \, dx}{\sqrt {\cos (c+d x)}} \\ & = \frac {A b^2 \sqrt {b \cos (c+d x)} \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x)}+\frac {\left (b^2 \sqrt {b \cos (c+d x)}\right ) \int (B+C \cos (c+d x)) \sec (c+d x) \, dx}{\sqrt {\cos (c+d x)}} \\ & = \frac {b^2 C x \sqrt {b \cos (c+d x)}}{\sqrt {\cos (c+d x)}}+\frac {A b^2 \sqrt {b \cos (c+d x)} \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x)}+\frac {\left (b^2 B \sqrt {b \cos (c+d x)}\right ) \int \sec (c+d x) \, dx}{\sqrt {\cos (c+d x)}} \\ & = \frac {b^2 C x \sqrt {b \cos (c+d x)}}{\sqrt {\cos (c+d x)}}+\frac {b^2 B \text {arctanh}(\sin (c+d x)) \sqrt {b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}+\frac {A b^2 \sqrt {b \cos (c+d x)} \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.08 (sec) , antiderivative size = 60, normalized size of antiderivative = 0.59 \[ \int \frac {(b \cos (c+d x))^{5/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {(b \cos (c+d x))^{5/2} (C d x \cos (c+d x)+B \text {arctanh}(\sin (c+d x)) \cos (c+d x)+A \sin (c+d x))}{d \cos ^{\frac {7}{2}}(c+d x)} \]

[In]

Integrate[((b*Cos[c + d*x])^(5/2)*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/Cos[c + d*x]^(9/2),x]

[Out]

((b*Cos[c + d*x])^(5/2)*(C*d*x*Cos[c + d*x] + B*ArcTanh[Sin[c + d*x]]*Cos[c + d*x] + A*Sin[c + d*x]))/(d*Cos[c
 + d*x]^(7/2))

Maple [A] (verified)

Time = 9.74 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.72

method result size
default \(\frac {b^{2} \sqrt {\cos \left (d x +c \right ) b}\, \left (-2 B \cos \left (d x +c \right ) \operatorname {arctanh}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+C \cos \left (d x +c \right ) \left (d x +c \right )+A \sin \left (d x +c \right )\right )}{d \cos \left (d x +c \right )^{\frac {3}{2}}}\) \(73\)
parts \(\frac {A \,b^{2} \sin \left (d x +c \right ) \sqrt {\cos \left (d x +c \right ) b}}{d \cos \left (d x +c \right )^{\frac {3}{2}}}-\frac {2 B \,\operatorname {arctanh}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) b^{2} \sqrt {\cos \left (d x +c \right ) b}}{d \sqrt {\cos \left (d x +c \right )}}+\frac {C \,b^{2} \sqrt {\cos \left (d x +c \right ) b}\, \left (d x +c \right )}{d \sqrt {\cos \left (d x +c \right )}}\) \(108\)
risch \(\frac {b^{2} C x \sqrt {\cos \left (d x +c \right ) b}}{\sqrt {\cos \left (d x +c \right )}}+\frac {2 i b^{2} \sqrt {\cos \left (d x +c \right ) b}\, A}{\sqrt {\cos \left (d x +c \right )}\, d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )}+\frac {b^{2} \sqrt {\cos \left (d x +c \right ) b}\, B \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{\sqrt {\cos \left (d x +c \right )}\, d}-\frac {b^{2} \sqrt {\cos \left (d x +c \right ) b}\, B \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{\sqrt {\cos \left (d x +c \right )}\, d}\) \(146\)

[In]

int((cos(d*x+c)*b)^(5/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2),x,method=_RETURNVERBOSE)

[Out]

b^2/d*(cos(d*x+c)*b)^(1/2)*(-2*B*cos(d*x+c)*arctanh(cot(d*x+c)-csc(d*x+c))+C*cos(d*x+c)*(d*x+c)+A*sin(d*x+c))/
cos(d*x+c)^(3/2)

Fricas [A] (verification not implemented)

none

Time = 0.34 (sec) , antiderivative size = 324, normalized size of antiderivative = 3.18 \[ \int \frac {(b \cos (c+d x))^{5/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\left [-\frac {2 \, B \sqrt {-b} b^{2} \arctan \left (\frac {\sqrt {b \cos \left (d x + c\right )} \sqrt {-b} \sin \left (d x + c\right )}{b \sqrt {\cos \left (d x + c\right )}}\right ) \cos \left (d x + c\right )^{2} - C \sqrt {-b} b^{2} \cos \left (d x + c\right )^{2} \log \left (2 \, b \cos \left (d x + c\right )^{2} - 2 \, \sqrt {b \cos \left (d x + c\right )} \sqrt {-b} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - b\right ) - 2 \, \sqrt {b \cos \left (d x + c\right )} A b^{2} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, d \cos \left (d x + c\right )^{2}}, \frac {2 \, C b^{\frac {5}{2}} \arctan \left (\frac {\sqrt {b \cos \left (d x + c\right )} \sin \left (d x + c\right )}{\sqrt {b} \cos \left (d x + c\right )^{\frac {3}{2}}}\right ) \cos \left (d x + c\right )^{2} + B b^{\frac {5}{2}} \cos \left (d x + c\right )^{2} \log \left (-\frac {b \cos \left (d x + c\right )^{3} - 2 \, \sqrt {b \cos \left (d x + c\right )} \sqrt {b} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, b \cos \left (d x + c\right )}{\cos \left (d x + c\right )^{3}}\right ) + 2 \, \sqrt {b \cos \left (d x + c\right )} A b^{2} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, d \cos \left (d x + c\right )^{2}}\right ] \]

[In]

integrate((b*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2),x, algorithm="fricas")

[Out]

[-1/2*(2*B*sqrt(-b)*b^2*arctan(sqrt(b*cos(d*x + c))*sqrt(-b)*sin(d*x + c)/(b*sqrt(cos(d*x + c))))*cos(d*x + c)
^2 - C*sqrt(-b)*b^2*cos(d*x + c)^2*log(2*b*cos(d*x + c)^2 - 2*sqrt(b*cos(d*x + c))*sqrt(-b)*sqrt(cos(d*x + c))
*sin(d*x + c) - b) - 2*sqrt(b*cos(d*x + c))*A*b^2*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^2), 1/2*(2*
C*b^(5/2)*arctan(sqrt(b*cos(d*x + c))*sin(d*x + c)/(sqrt(b)*cos(d*x + c)^(3/2)))*cos(d*x + c)^2 + B*b^(5/2)*co
s(d*x + c)^2*log(-(b*cos(d*x + c)^3 - 2*sqrt(b*cos(d*x + c))*sqrt(b)*sqrt(cos(d*x + c))*sin(d*x + c) - 2*b*cos
(d*x + c))/cos(d*x + c)^3) + 2*sqrt(b*cos(d*x + c))*A*b^2*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^2)]

Sympy [F(-1)]

Timed out. \[ \int \frac {(b \cos (c+d x))^{5/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((b*cos(d*x+c))**(5/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)/cos(d*x+c)**(9/2),x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.49 (sec) , antiderivative size = 151, normalized size of antiderivative = 1.48 \[ \int \frac {(b \cos (c+d x))^{5/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {4 \, C b^{\frac {5}{2}} \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right ) + \frac {4 \, A b^{\frac {5}{2}} \sin \left (2 \, d x + 2 \, c\right )}{\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1} + {\left (b^{2} \log \left (\cos \left (d x + c\right )^{2} + \sin \left (d x + c\right )^{2} + 2 \, \sin \left (d x + c\right ) + 1\right ) - b^{2} \log \left (\cos \left (d x + c\right )^{2} + \sin \left (d x + c\right )^{2} - 2 \, \sin \left (d x + c\right ) + 1\right )\right )} B \sqrt {b}}{2 \, d} \]

[In]

integrate((b*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2),x, algorithm="maxima")

[Out]

1/2*(4*C*b^(5/2)*arctan(sin(d*x + c)/(cos(d*x + c) + 1)) + 4*A*b^(5/2)*sin(2*d*x + 2*c)/(cos(2*d*x + 2*c)^2 +
sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1) + (b^2*log(cos(d*x + c)^2 + sin(d*x + c)^2 + 2*sin(d*x + c) + 1)
- b^2*log(cos(d*x + c)^2 + sin(d*x + c)^2 - 2*sin(d*x + c) + 1))*B*sqrt(b))/d

Giac [F]

\[ \int \frac {(b \cos (c+d x))^{5/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \left (b \cos \left (d x + c\right )\right )^{\frac {5}{2}}}{\cos \left (d x + c\right )^{\frac {9}{2}}} \,d x } \]

[In]

integrate((b*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(b*cos(d*x + c))^(5/2)/cos(d*x + c)^(9/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(b \cos (c+d x))^{5/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\int \frac {{\left (b\,\cos \left (c+d\,x\right )\right )}^{5/2}\,\left (C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A\right )}{{\cos \left (c+d\,x\right )}^{9/2}} \,d x \]

[In]

int(((b*cos(c + d*x))^(5/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c + d*x)^(9/2),x)

[Out]

int(((b*cos(c + d*x))^(5/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c + d*x)^(9/2), x)